A remark on non-local theories of elasticity, piezoelectric materials etc

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on constrained von Kármán theories.

We derive the Euler-Lagrange equation corresponding to 'non-Euclidean' convex constrained von Kármán theories.

متن کامل

Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory

In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...

متن کامل

A Remark on Non-conformal Non-supersymmetric Theories with Vanishing Vacuum Energy Density

We discuss non-conformal non-supersymmetric large N gauge theories with vanishing vacuum energy density to all orders in perturbation theory. These gauge theories can be obtained via a field theory limit of Type IIB D3-branes embedded in orbifolded space-times. We also discuss gravity in this setup. Typeset using REVTEX E-mail: [email protected] E-mail: [email protected]...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Engineering Science

سال: 2015

ISSN: 0020-7225

DOI: 10.1016/j.ijengsci.2015.08.010